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Abstract. A mesoscopic evolution equation for an ensemble of mesoparticles follows from
the elimination of internal degrees of freedom. If the system is composed of a hierarchy of
scales then the reduction procedure could be worked repeatedly and the characterization of
this iterating method is carried out. Namely, a prescription describing a discrete hierarchy of
master equations for the density operator is obtained. Decoherence follows from the irreversible
coupling between the system, defined by mesoscopic variables, and internal degrees of freedom.
We briefly discuss the existence of systems with the same dynamics laws at different scales. We
made an explicit calculation for an ensemble of particles with internal harmonic interaction in
an external anharmonic field. New conditions related to the semiclassical limit for mesoscopic
systems (Wigner-function) are conjectured.

1. Introduction. Reduction technique

The study of models allowing a unified description of microscopic and macroscopic physical
systems has a long history. The problem is related to microscopic superposition of states and
its non-occurrence at macroscopic scales. Interesting responses and different propositions
can be found in [1–17] which are related to coherence destruction by different approaches
to the macroscopic level. Many of these theories are related to the original ideas developed
by Landau [1] with respect to the high density of states for a macroscopic object, and high
sensibility to external perturbation. Thus, any small perturbation produces an undefined
(macroscopic) state and then mixture (i.e. decoherence). Nevertheless, it isnaive to
think that the physics between elementary particles and macroscopic objects, for instance
macromolecules, can be described only for one mesoscopic theory. This is the case of the
DNA-macromolecule which, in a first level, is composed of interacting atoms and finally
becomes responsible for transmission of genetic information in a biological level. Other
examples are some biological composites such as the hierarchical organization of tendon,
bone, mollusk shell, synthetic composites [18, 19] and others.

The scope of this paper is the study of an iterating systematic procedure at different
discrete scales of perception or levels. The idea is simple, we start with an ensemble of
elementary particles forming clusters around its mass centres, then we eliminate the internal
degrees of freedom. In this way the dynamics law for this reduced system is obtained and
the procedure could be worked again to the next level (figure 1).

The general assumptions to construct the hierarchy of master equations are as follows.
(i) The system is composed of a hierarchy of scales, or levels, where we can recognize

different architectures of clusters.
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Figure 1. A schematic picture of the reduction procedure (two step). At the first level (N = 1),
we have different clusters recognition. The full lines represent interactions and, in every step,
loss memory effects are assumed.

(ii) There is intercorrelation between levels. Specifically, a given set of clusters make
up a cluster in the next scale.

(iii) The dynamical requirement (equations of motion), in a given scale, is dependent
on the above one.

Assumptions (i) and (ii) are related to geometrical aspects, and (iii) makes it possible to
obtain dynamical laws from more fundamentals scales. In fact, (iii) is related to the belief
that phenomenological laws can be explained from fundamental models.

This paper is organized as follows. In this first section, we briefly discuss the standard
reduction method applied to an ensemble of generic systems. In section 2 we deal with the
iterating method and find the master equation describing the dynamics, at different discrete
scales, for interacting mesoparticles. In section 3 some examples are briefly studied and
we investigate the question related to the existence of invariant systems under a reduction
procedure. In section 4, we use the Wigner function to explore the semiclassical limit for
the quantum evolution equation. The mesoscopic term, related to the internal degree of
freedom, requires new conditions other than the usual one related to the optical geometric
limit. Conclusions and discussions are presented in the final section.

We shall now briefly reviewed the reduction procedure [20–26] which will be used in
the next section. Consider the interaction between a systemS and otherR, with many
degrees of freedom, and the evolution equation for the complete system

∂tρ = Lρ. (1)

We assume that the Liouville–von Neumann operator is decomposed like

L = LS + LR + LI (2)

whereLI denotes the interaction term assumed time independent. Consider the projector
operatorP acting on the total density operatorρ (or the space density distribution in the
classical case):Pρ = ρeR Tr

R
(ρ) whereρeR denotes the equilibrium state of the systemR.
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In the classical case, the partial trace operation is replaced by an integral over the phase
space ofR. As usual, the projection operatorP satisfies [21]:

PLR = LRP = 0 PLS = LSP PLIP = 0. (3)

In this way from the evolution equation (1), for the complete system, and projecting on the
space spanned byP andQ = 1− P , one obtains the equation forS:

∂tρS = LSρS + Tr
R

∫ t

0−
LIdτ eQLτQLI ρeRρS(t − τ). (4)

To obtain the above equation the usual initial conditionρ(0) = ρeRρS was assumed.
Equation (4) is exact and cumbersome because the integral term is dependent on the history
of S. From (3) and expanding at second order in the interaction term one obtains the
equation

∂tρS = LSρS +
∫ t

0−
dτ 〈LILI (τ )〉RρS(t) (5)

where 〈◦〉
R

denotes the partial trace operation Tr
R
(◦ρeR), and the symbol ‘◦’ means an

element of the space of operators. Assuming the usual memory loss property or Markov
approximation:

〈LILI (τ )〉R = γ δ(τ )L2
IS (6)

with γ a positive parameter andLIS an operator acting onρS , then we obtain from (5) and
(6), the evolution equation forS

∂tρS = LSρS + γL2
ISρS. (7)

The explicit verification of the properties:ρS = ρ†S , TrρS = 1 andρS > 0 (positivity) must
always be carried out. Note that currently an equation like (7) is related to decoherence.
Specifically, the reservoirR changes any system pure states to mixed. An approximated
case, whereLIS = LS , with decoherence and without dissipation can be found in [7, 8]. For
a criticism to the reduction procedure see for instance [9, 11] where a completely integrable
system was considered. Dissipating effects are treated in [4] (nonlinear equation) where
other techniques were considered.

2. Reduction procedure. Hierarchy of master equations

In this section we use the reduction procedure sketched in section 1, including a coordinate
change to the centre of mass, and we obtain the evolution operator at the next scale or level.
Namely, we formalize the procedureL(n) → L(n+1) wheren defines the level withN(n)

interacting particles formingN(n+1) clusters (N(n) > N(n+1), figure 1) which are recognized
by using some physical constraints (assumption (i)). For instance, they could beN(n+1)

molecules, composed of atoms, in an electric field or interacting macromolecules composed
of molecules. After the cluster recognition, we consider a coordinate change to the centre of
mass (assumption (ii)), eliminating the internal degrees of freedom for every cluster (tracing
out technique).

Formally at leveln, the equation of motion for the density distribution in the classical
case, or the density operator in the quantum case, is

∂tρ
(n) = L(n)ρ(n) (8)

whereL(n) denotes a linear operator constructed, for instance, by elementary Liouvillian
(or von Neumann) operators likeLf ◦ = {f, ◦} (or Lf ◦ = (1/ih̄)[f, ◦]). Where the symbol
{◦, ◦} (or [◦, ◦]) stands for the usual Poisson brackets (commutator).
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In (8), the indexn becomes related to the discrete scale, and the idea is to obtain the
evolution equation, at next scale, by constructing the new operatorL(n+1) from the dynamics
at scalen (assumption (iii)). In this way, the reduction procedure has technically two steps.

(a) A coordinate change to the centre of mass of every cluster.
(b) Elimination of internal degrees of freedom by assuming loss-memory-effects (i.e.

internal complexity).
Therefore, the reductionN(n) → N(n+1) gives an equation similar to (8), where the

Liouville–von Neumann operator is determined using steps (a) and (b). To find the new
evolution operator, we assume the decomposition:

L(n) = L(n)K + L(n)V . (9)

Namely, a kinetic part depending on momentum and another part depending on position.
First, we explicitly consider the first reduction procedure because it contains all of the

basic ingredients for further iterations. Namely, we consider the reductionL(0) → L(1),
where the indexn = 0 stands for an elementary set of interacting particles forming clusters.

Let xj(α) be the position of the particlej (integer) in the clusterα (integer) where
1< α < N(1). Consider the transformation to the centre of massyα, of the clusterα, given
by

xj(α) = yα + rj (α) (10)

whererj (α) denotes the relative distance with respectyα. Consider the interacting internal
potentialUT ,

UT =
∑

q
k(β)

j (α) U(xj(α) − xk(β)) (11)

where q is a coupling parameter and the summation rules on all indices and no self-
interactions, or repeated indices, are assumed. Moreover, likej (α), the termk(β) denotes
the particlek in the cluster atyβ . From (10), the potential transforms like

UT =
∑

q
k(β)

j (α) (U(yα − yβ)+ (rj (α) − rk(β))U ′(yα − yβ))+ F(r) (12)

where a first-order multipolar expansion, in the internal coordinates, was assumed and the
symbolU ′ denotes the first derivative. Moreover in (12),F(r) denotes the linear terms
depending only on the relative coordinate and related to internal interaction in the cluster.
Now we define the coupling parameter, between clusters,Qβ

α and the momentdα,β like

Qβ
α =

∑
j,k

q
k(β)

j (α) dα,β =
∑
j,k

q
k(β)

j (α) (rj (α) − rk(β)). (13)

and from equations (12) and (13) the internal interacting potential becomes

UT =
∑
α>β

Qβ
αU(yα − yβ)+ dα,βU ′(yα − yβ)+ F(r). (14)

Similarly, for an external field acting on every particle and given by

VT =
∑
α,j

qj (α)V (xj (α)) (15)

and defining the new coupling parameters and dipolar distribution by

Qα =
∑
j (α)

qj (α) mα =
∑
j (α)

qj (α)rj (α) (16)

then the potential (15) can be written, at first order in the relative coordinates, as

VT =
∑
α

QαV (yα)+mαV ′(yα) (17)
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and like (12) the symbolV ′ denotes the first derivative. Remark that no term likeF(r)
appears here. From (14), (17), and the transformation for the kinetic term which is form-
invariant, the complete Hamiltonian becomes

H = HS +HR +HI (18)

where the explicit form for the Hamiltonians are

HS =
∑
α

p2
α

2µα
+QαV (yα)+

∑
α>β

Qβ
αU(yα − yβ) (19)

HI =
∑
α

V ′(yα)mα +
∑
α>β

U ′(yα − yβ)dα,β (20)

andHR is the contribution due only to internal coordinates(r, ṙ). In equation (19) the term
µα denotes the total mass of the clusterα. Recall that it was always assumed to be a first
multipolar order expansion in the internal coordinate.

In this way, the Hamiltonian (18) has the structure worked in section 1. Since the
internal variablesdα,β andmα are assumed independent and have the loss memory property
then, from section 1, the evolution operator for the ensemble of mesoparticles with position
yα is

L(1) = L(0)(y, p)+
∑
α

γ (1)α (L(1)IV (yα))2+
∑
α>β

γ
(1)
α,β(L

(1)
IU (yα − yβ))2 (21)

where we have for every component the expressions:

L(0)(y, p)◦ = {HS, ◦} (22)

(L(1)IV (yα))2◦ = {V ′(yα), {V ′(yα), ◦}} (23)

(L(1)IU (yα − yβ))2◦ = {U ′(yα − yβ), {U ′(yα − yβ), ◦}} (24)

namely a double Poisson brackets, or double commutator in the quantum case.
In (21) the parametersγ are related to white-noise-type correlations between internal

variables (dipole moments) for every mesoparticle. This is the Markovian approximation
where memory effects are ignored. Expression (21) gives us the evolution operatorL(1)
for N(1) mesoparticles of coordinates(yα, pα), where internal degrees of freedom were
eliminated. We notice that assumption (iii), of section 1, is in accord with our deduction
because the evolution operator atn = 1, corresponding toN(1) clusters, was deducted from
this one atn = 0 with N(0) particles. Similar equations for one, or two mesoparticles,
were also discussed in [27–29]. The idea to use internal degrees of freedom as an internal
environment is also discussed in [30].

The above evolution operator (21) is related to the first elimination of internal degrees.
Nevertheless, if we can recognize a second structure of clusters, we can eliminate new
internal degrees. Evidently, this will be possible only if the Markovian approximation
is valid. Let L(n)(xj , qj ) be the evolution operator at scalen with N(n) particles, which
includes kinetics and potential terms like (9), and consider a recognition ofN(n+1) clusters
with centre of masses atyα where naturally 1< α < N(n+1). Then the first-order multipolar
expansion with respect to the relative coordinates (10) is

L(n) = L(n)(y,Q)+
∑
α

∂L(n)(y,Q)
∂yα

dα + F(r) (25)

where the formal derivative stands for the first-order expansion, anddα are linear functions
of the internal degreesr. Moreover,Q denotes some redefined coupling parameters such
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as the mass or charge of every mesoparticles. Then we still have a situation similar to that
of section 1, and if we assume the loss memory effect then the new evolution operator for
theN(n+1) mesoparticles will be

L(n+1) = L(n)(y,Q)+
∑
α

γ (n)α

(
∂L(n)(y,Q)

∂yα

)2

. (26)

At this point we can state some remarks concerning equation (26). (a) Like the first
case(n = 0), the parametersγ are related to white-noise type correlation between dipolar
momentsd of every cluster. So, we assume a hierarchy of timescales where the internal
motion is faster than that of every cluster (centre of mass). (b) The formal derivative stands
for the first-order multipolar expansion around the centre of mass of every mesoparticle,
or cluster. (c) Expression (26) is valid in the quantum or classical case, whereL becomes
related to a set of elementary commutators or Poisson brackets. (d) The space structure
(lattice, disordered, etc) is contained inL0. It determines the criterion for the cluster
recognition. (f) Remark that the free particles case (LV = LU = 0) is a trivial form-
invariant example under the reduction procedure.

3. Examples

We will now briefly examine some examples related to the reduction procedure discussed
in section 2. Explicitly, we consider an ensemble of harmonic interacting particles with
anharmonic external fields. In fact, the structure of the evolution operator becomes invariant
after some reductions (other than some redefined coupling parameters). The search for
invariance was also investigated in [3] for a two-parameter model of decoherence, where
the equation of motion for the centre of mass is formally identical to the equation for the
microscopic constituents.

Consider an ensemble of particles with harmonic interaction, in a nonlinear external
field. The internal and external interaction operators are given by

L(0)U ◦ =
∑
i 6=j
( 1

2){Ki,j (xi − xj )2, ◦} (27)

L(0)V ◦ = λ
∑
j

{x3
j , ◦} (28)

whereKi,j are positive constants andλ is a coupling parameter. The expansion around the
N(1) centre of mass gives

L(0)U ◦ =
∑
α 6=β

( 1
2){K ′α,β(yj (α) − yk(β))2, ◦}

+
∑
α 6=β

∑
j,k

{Kj(α),k(β)(yα − yβ)(rj (α) − rk(β)), ◦} + F(r) (29)

and for the external component

L(0)V ◦ = λ′
∑
α

{y3
α, ◦} + 3λ

∑
α,j

{y2
αrj (α), ◦} (30)

whereK ′ and λ′ are redefined coupling parameters. The reduction procedure (section 2)
leads to the evolution operator

L(1)◦ =
∑
α

{
p2
α

2µα
+ λ′y3

α, ◦
}
+
∑
α,β

K ′α,β{(yα − yβ)2, ◦}
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+
∑
α,β

γ Kα,β{(yα − yβ), {(yα − yβ), ◦}} +
∑
α

γ λα {y2
α, {y2

α, ◦}} (31)

which gives us the evolution equation for the set of mesoparticles. At this point we
have an interesting result, a second reduction process, makes form-invariant the (internal)
evolution operator. In fact, the only changes are related to the redefinition of the coupling
parameters and mass. The same is true for the external anharmonic term in (31), which
becomes invariant after three reduction process. This is a general property related to the
formal first derivative in expression (26) for the evolution operator. For systems interacting
algebraically (i.e.V,U ∼ xs) the reduction procedure is invariant after a number finite of
steps. Namely, the laws of evolution become the same at different scales of perceptions
for algebraic interaction (aside the renormalized parameters). For instance, consider the
elementary operator

E lij◦ = {(xi − xj )l, ◦} (32)

which satisfies

E0
ij = 0. (33)

Moreover, consider the zero-level interaction operator (K = 1)

L(0)U =
N(0)∑
ij

E sij (34)

with algebraic interaction of orders. Since the reduction procedure raises the index ofE l ,
i.e. l→ l − 1, and duplicates the number of elementary operators, the first reduction gives

L(0)U −→
N(1)∑
ij

E sij + γ E s−1
ij E s−1

ij (35)

corresponding to the operatorL(1)U . We remark, from (33), that it becomes form-invariant
whens = 1. A second reduction procedure gives

L(1)U −→
N(2)∑
ij

E sij + γ ′E s−1
ij E s−1

ij + γ ′′(E s−2
ij E s−1

ij )2+ γ ′′(E s−1
ij E s−2

ij )2. (36)

So, from (33), fors = 2 no change exists in the form of the evolution operator. This is a
general property: for a product of elementary Liouville operators, the reduction procedure
operates like

. . . E lEm · · · −→ · · · E lEm · · · + (· · · E l−1Em · · ·)2+ (· · · E lEm−1 · · ·)2+ · · · (37)

where we have omitted the subindexi, j by simplicity. Clearly, from (33) and the above
expression, the reduction procedure saturates for a finite number of steps.

To close this section, we remark that the reduction procedure must be stopped when
there is no loss memory effect, and then this process cannot be continuously carried out.
For instance, this is the case for a system with a finite number of constituents. Also, we
noticed that geometric aspects must be considered at every reduction.
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4. Wigner function and the classical limit

Since (21) is also valid for quantum system making the appropriate changes, it is instructive
to study the semiclassical limit using the Wigner function. In fact, we shall find that the
semiclassical limit needs some new conditions because the decoherence term is related to
the parameterγ .

The Wigner functionρw defined by the Fourier transform of the density operator in
coordinate representation is given by

ρw(x, p, t) = 1

h

∫
dη eipη/h̄ρ(x − η/2, x + η/2, t). (38)

Whereρ(x, y, t) is the statistical operator in coordinate representation. Then, from equation
(21) and keeping by simplicity only the external potential term, the evolution for the Wigner
function becomes

∂tρw = {HS, ρw} + γ
{
∂V

∂x
,

{
∂V

∂x
, ρw

}}
+(h̄2/24)

(
∂3V

∂x3

∂3ρw

∂p3
− 2γ

∂2V

∂x2

∂4V

∂x4

∂4ρw

∂p4

)
+O(h̄4). (39)

The first two terms are the classical operators (22), (23) and the others are related to
the quantum contribution. So, the mesoscopic term related to the parameterγ gives new
quantum corrections. The usual semiclassical approximation, whenγ = 0, is the well
known relationship∣∣∣∣∂V∂x ∂ρw∂p

∣∣∣∣� h̄2

∣∣∣∣∂3V

∂x3

∂3ρw

∂p3

∣∣∣∣ (40)

and related roughly to the optical geometrical limit. It must be noted, however, that a
similar condition related to the mesoscopic term from (39) condition is (γ 6= 0)∣∣∣∣∣

(
∂2V

∂x2

)2
∂2ρw

∂p2

∣∣∣∣∣� h̄2

∣∣∣∣∂2V

∂x2

∂4V

∂x4

∂4ρw

∂p4

∣∣∣∣ . (41)

Namely, it explores even derivatives in the potential.
Finally, we note that the deduction of the evolution equation (39), for the Wigner

function, was obtained assuming (integration by part)

ih̄∂xρ(x − η, x + η) eipη/h̄|η=∞η=0 = 0 (42)

namely, the vanishing of the correlation term at infinity. This requirement is not always
verified, for instance, consider the statesρ = ψ(y)∗ψ(x) where the wavefunction is
ψ = sinkx which does not satisfy (42). Nevertheless, the contribution due to the
decoherence in (21), produces a fast annulment of the off-diagonal terms in the statistical
operator for short-range external potential. In this way, condition (42) can be satisfied
for times greater than the decoherence time, and given a solid support to the evolution
equation (39) for the Wigner function. Explicitly, consider equations (21)–(24) in one
dimension and one mesoparticle of massm in an external field. In coordinate representation
(21) becomes (¯h = 1)

∂tρ = i

2m
(∂2
xρ − ∂2

yρ)− i(V (x)− V (y))ρ − γ (V ′(x)− V ′(y))2ρ. (43)
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If the external field has finite range (i.e.V (x) = 0 if | x |> a) then the density matrix can
be writtenρ = ψ(x, t)ψ∗(y, t) since for| x−y |> a the crossed termV ′(x)V ′(y) (in (43))
becomes zero. The equation for the amplitude becomes

i∂tψ = − 1

2m
∂2
xψ + Vψ − iγV ′2ψ. (44)

Since the external potential is time independent, consider the solutionψ = e−iEtφ(x) where
E is a complex quantity then, from (44), we have

ImE = −γ
∫

dx V ′2|φ|2 (45)

which is always a non-positive quantity. Therefore, the non-diagonal elementsρ(x, y)

(where| y − x |> a) go exponentially to zero.

5. Conclusions and discussion

We have considered a hierarchy of master equations describing the evolution, at different
scales of perception, for ensembles of mesoparticles. Explicitly, equation (26) gives us
formally the evolution operatorL(n+1) from this one at leveln (assumption (iii)). Its
deduction requires a systematic coordinate change to the centres of mass, defined by some
physical constraints, and the elimination of internal degrees of freedom is carried out
assuming loss memory effects. This Markovian approximation is not always valid and
then, in such a case, the reduction process must be stopped. The first reduction procedure
was carried out explicitly for an ensemble of elementary components (21).

It must be noted that assumptions (i)–(iii), of section 1, are the basis where our
reduction procedure was developed. Namely, they make it possible for one to obtain a
hierarchy of master equations at different scales of perception for cluster of mesoparticles.
Some similarities between (i)–(iii) and those used in the architecture of complex synthetic
assembles can be found in [18, 19].

On the other hand, some important points related to the deduction of the evolution
equation (21) and (26) are as follows.

(a) The first multipolar order expansion, in the interaction term, implies that the
asymptotic limitt →+∞ must be carried out carefully at different scales [28].

(b) Decoherence effects at every discrete scale appear usually related to the reduction
technique (section 1). Thus, decoherence at a macroscopic level is due to the internal
complexity of every macroparticle. Quantum superposition is turned into statistical mixture.

(c) The search for invariant systems was carried out explicitly for a model composed
of interacting oscillators with an anharmonic term. Other algebraic invariant systems were
found.

(d) It was assumed that the internal moments, such asd orm in (13) and (16), are random
and independent. Obviously this is not easy to prove and we have only to assume that
behaviour. The statistical independence, between these random variables, is a simplification
related with our calculations.

(e) The deduction of a general equation like (7) was carried out assuming special initial
conditions (ρ(t = 0) = ρeRρS). In our specific case of section 2, these conditions do not
necessarily hold. More explicitly, the internal interaction cannot be switched-up arbitrary.
It is an open problem to prove the validity of our procedure here.

(f) In every step (n→ n+1) it was assumed the loss of memory effects, or equivalent,
the existence of a hierarchy of timescales. This is a fundamental assumption to carry out
the reduction procedure. If there is no loss of memory, the procedure must be stopped.
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To explore possible applications of our prescription, we can consider trends such as
wavematter, currently studied theoretically as well as experimentally. After all, interacting
atoms in external fields could be considered as mesoparticles. Specifically, with laser cooling
techniques it becomes possible to cool atoms so that the quantum nature of atomic centre-
of-mass motion becomes important [31, 32]. For instance, equation (43) could be used to
study the motion of ultracold sodium atoms exposed to a one-dimensional spatially periodic
potential pulsed in time. On the other hand, it can be interesting to note the growing
interest in new mechanisms to break Anderson localization in disordered systems [33].
Particularly, there is controversy about the possible enhancement of the localization length
for interacting particles [34]. This suggests considering the behaviour of mesoparticles in
disordered systems. Namely, an equation like to (21) or (43) with an external random
potential. After all, localization is a phenomenon related to coherence which is lost due
to internal complexity for mesoparticles. A more detailed treatment of these points, and
further physical applications will be given elsewhere.
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